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Abstract—We introduce DreamCraft3D++, an extension of DreamCraft3D that enables efficient high-quality generation of complex 3D
assets. DreamCraft3D++ inherits the multi-stage generation process of DreamCraft3D, but replaces the time-consuming geometry
sculpting optimization with a feed-forward multi-plane based reconstruction model, speeding up the process by 1000x. For texture
refinement, we propose a training-free IP-Adapter module that is conditioned on the enhanced multi-view images to enhance texture
and geometry consistency, providing a 4x faster alternative to DreamCraft3D’s DreamBooth fine-tuning. Experiments on diverse
datasets demonstrate DreamCraft3D++’s ability to generate creative 3D assets with intricate geometry and realistic 360° textures,
outperforming state-of-the-art image-to-3D methods in quality and speed. The full implementation will be open-sourced to enable new
possibilities in 3D content creation.

Index Terms—3D generation, diffusion model, score distillation, single-view 3D reconstruction
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1 INTRODUCTION

THE remarkable success of 2D generative modeling [1],
[2], [3], [4] has profoundly shaped the way that we

create visual content. 3D content creation, which is cru-
cial for applications like games, movies and virtual reality,
still presents a significant challenge for deep generative
networks. While 3D generative modeling has shown com-
pelling results for certain categories [5], [6], [7], generating
general 3D objects remains formidable due to the lack of
extensive 3D data.

Recent research in 3D generation has evolved into two
main paradigms: 2D lifting [8], [9], [10], [11], [12] and feed-
forward 3D generation [13], [14], [15], [16], [17], [18]. 2D
lifting methods leverage pretrained 2D vision models to
guide 3D optimization, with DreamFusion [8] introducing
Score Distillation Sampling (SDS) loss to align 3D render-
ings with text-conditioned image distributions. Subsequent
works have improved photo-realism through stage-wise op-
timization and enhanced distillation losses. However, these
approaches often struggle with complex content synthesis
and suffer from the ”Janus issue,” where individual render-
ings appear plausible but lack holistic consistency. While
recent advancements have significantly improved quality
and speed, SDS-based methods remain computationally
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expensive, typically requiring minutes to hours for single
object generation.

Recent advancements in the feed-forward 3D genera-
tion [13], [14], [15], [16], [17], [18] have significantly im-
proved efficiency through the use of 3D large reconstruction
models(LRM) [15]. These approaches typically employ a
two-step process: first, generating multi-view images from
a single input image or text prompt, and then directly
regressing 3D representations from these generated images
using sparse-view reconstructors. However, these methods
invariably require 3D shapes or multi-view data for training,
which presents challenges when generating in-the-wild 3D
assets due to the relative scarcity of diverse 3D data com-
pared to 2D data. Furthermore, the reconstruction results
often exhibit limitations, such as a lack of fine geometric
structures and detailed texture patterns.

To recap, DreamCraft3D [12] falls within the category
of 2D lifting and draw inspiration from the manual artistic
process, breaking down the challenging 3D generation into
manageable steps. Starting with a high-quality 2D reference
image generated from a text prompt, DreamCraft3D lifts it
into 3D via stages of geometry sculpting and texture boost-
ing. In the geometry sculpting stage, DreamCraft3D adopts
joint 2D-3D SDS loss for novel views and photometric loss
at the reference view for producing plausible and consistent
3D geometry. In the texture boosting stage, in order to
obtain consistent texture, a pretrained text-to-image diffu-
sion model is finetuned on multi-view renderings of the 3D
instance, resulting a personalized 3D-aware generative prior
for texture boosting.

While DreamCraft3D significantly improves 3D gener-
ation quality, its main drawback is the lengthy processing
time, requiring approximately 3 hours per case. In this pa-
per, we introduce DreamCraft3D++, an enhanced extension
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Fig. 1: By lifting 2D images to 3D, DreamCraft3D++ achieves 3D generation with rich details and holistic 3D consistency.
Please refer to the demo video for more results.
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of DreamCraft3D that enables efficient and high-quality
complex 3D asset generation. Our approach maintains the
high generation quality of DreamCraft3D while accelerating
the process by a factor of 20, reducing the generation time
from three hours to just 10 minutes. Through a detailed
analysis of the optimization time for individual stages, we
identified that the geometry sculpting stage accounts for
over 70% of the total time, as optimizing 3D structures
from scratch without any shape prior is computationally
expensive. Inspired by [15], we propose training a large
reconstruction model to provide a coarse textured mesh,
thereby replacing the original time-consuming geometry
sculpting stage.

To achieve this, our approach utilizes multi-view images
as input to a UNet-based architecture for predicting pixel-
aligned multi-plane features, which is crucial for bridging
2D and 3D. Our method diverges from current counter-
parts [15], [16], [19] in two key aspects. Firstly, our approach
predicts a nonorthogonal multi-plane representation from
fixed-view images, instead of predicting orthogonal axis-
aligned planes (e.g. tri-planes) in [15], [16], [20], [21], [22].
We opt for nonorthogonal planes instead of orthogonal
ones because directly learning generalized canonical 3D
features (e.g., axis-aligned triplanes or grids) from 2D posed
images is difficult, particularly given limited training data
and network capacity. By predicting nonorthogonal image-
aligned plane features, the network can concentrate more
effectively on translating 2D high-frequency details into 3D
representations. Secondly, we leverage a U-Net convolu-
tional architecture to map input images to multi-planes,
exploiting the strong pixel-level alignment between input
and output. The substantial bandwidth capacity of our
U-Net enables direct transformation of multi-view images
into multi-planes, yielding highly detailed results. Addition-
ally, we incorporate normal maps into the reconstruction
network, enhancing the model’s comprehension of spatial
relationships and geometry.

From the generated multi-plane features, we further
decode Flexicubes [23] parameters and predict the textured
mesh. In contrast to NeRF’s memory-intensive volume ren-
dering, our approach leverages efficient mesh rasterization,
enabling the use of full-resolution images and additional ge-
ometric information for supervision. This results in superior
reconstruction quality. While alternative 3D representations
such as Gaussian Splatting [24] also facilitate efficient high-
resolution rendering, they lack explicitly defined surfaces,
making them less suitable for geometric modeling.

The output textured meshes of the above geometry
sculpting stage are highly consistent to the multi-view input
images, though, still suffer from detail distortion because
1) limited network generalbility due to lacking data; 2)
inconsistent and blurry generated multi-view renderings
from mv diffusion models. Therefore, we introduce a novel
refinement algorithm to enhance both texture and geometry
concurrently. The core insight lies in that the pretrained
2D diffusion priors lack object awareness and lead to in-
consistent optimization, shared insight with DreamCraft3D.
But different from it which finetunes a pretrained diffusion
model with the multi-view image renderings using Dream-
Booth, we instead integerate a lightweight image prompt
adaptation module, named IP-Adapter [25], enabling the

model to form a concept about the scene’s surrounding
views. Different from DreamBooth, Ip-adapter is training-
free so it is much more efficient. Meanwhile, conditioning
the IP-adapter solely on the source image can lead to
ambiguity and the texture multi-head problem. To address
this, we condition the IP-adapter on both the source image
and augmented multi-view renderings. During training, the
appropriate IP-adapter image embedding is dynamically
selected based on the position of the randomly sampled
camera.

As shown in Figure 1, our method is capable of pro-
ducing creative 3D assets with intricate geometric struc-
tures and realistic textures rendered coherently in 360◦.
Compared to optimization-based approaches [8], [9], our
method offers substantially improved texture and efficiency.
Meanwhile, compared to image-to-3D techniques [11], [26],
our work excels at producing unprecedentedly realistic ren-
derings in 360◦renderings. These results suggest the strong
potential of DreamCraft3D++ in enabling new creative pos-
sibilities in 3D content creation. The full implementation
will be made publicly available.

While preserving the core multi-stage framework and
object-awareness, this paper extends DreamCraft3D, the
conference version of this work in the following key aspects:

• For the coarse geometry sculpting stage, we intro-
duce a feed-forward multi-plane based large recon-
struction model to replace time-expensive optimiza-
tion in DreamCraft3D, speeding up 1000 times with
comparable results;

• We introduce a training-free IP-Adapter to enhance
texture and geometry, achieving comparable results
to DreamCraft3D’s DreamBooth fine-tuning while
being 4 times faster. Our IP-Adapter’s dynamic
embedding selection based on camera position ad-
dresses texture inconsistency and preserves fidelity,
offering an efficient alternative to DreamCraft3D’s
approach.

• Compared to DreamCraft3D, we conduct experi-
ments on a wider range of datasets, demonstrating
the robustness and superiority of our model over
other image-to-3D methods.

2 RELATED WORKS

In this work, we focus on the task of generating high-
quality geometric and richly textured 3D models from single
images. We categorize the main research efforts in this area
into three aspects: Novel-View Synthesis, which involves
generating views from different perspectives of an object
based on input text or generating new viewpoint views
from a single input image; Progressively Optimized Recon-
struction, which leverages 2D generative models to progres-
sively optimize implicit 3D neural fields; and Feed-Forward
Generation, which involves generating 3D representations
in a feed-forward manner based on given text or image
instructions.

2.1 Novel-View Synthesis
Recently, direct novel views synthesis(NVS) from single
images of a 3D object has been explored, these works [27],
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[28], [29] often rely on a pretrained monocular depth pre-
diction model to synthesize view-consistent images. While
some models achieve photo-realistic renderings for Ima-
geNet categories, they struggle with large views. Recent
attempts [30], [31], [32], [33], [34], [35], [36], [37] training
view-dependent diffusion models on 3D data show promis-
ing results for open-domain novel view synthesis but, as
inherently 2D models, can’t ensure perfect view consistency.

Based on this rationale, diffusion models for NVS are
utilized as inputs for feed-forward 3D generation models,
aiming to leverage the generative capabilities of large mod-
els to eliminate inconsistencies present in multi-view images
while preserving reasonable texture and geometric infor-
mation found in those views. Inspired by these works, we
adopt the generative outputs of the multi-view generation
model Zero123++ [32] as prior inputs for our mp-lrm model.

2.2 Progressively Optimized Reconstruction
Progressively Optimized Reconstruction improve a 3D
scene representation by seeking guidance using established
2D text-image foundation models. Early works [38], [39],
[40] utilize the pretrained CLIP [41] model to maximize
the similarity between rendered images and text prompt.
DreamFusion [8] and SJC [42], on the other hand, propose
to distill the score of image distribution from a pretrained
diffusion model and demonstrate promising results. Recent
works have sought to further enhance the texture realism
via coarse-to-fine optimization [9], [43], improved distil-
lation loss [10], [44], [45], shape guidance [46] or lifting
NVS 2D images to 3D [11], [12], [26], [33], [47], [48], [49],
[50], [51]. Recently, [52] proposes to finetune a personal-
ized diffusion model for 3D consistent generation. How-
ever, producing globally consistent 3D remains challenging.
DreamCraft3D [12] meticulously design 3D priors through
the whole hierarchical generation process, achieving un-
precedented coherent 3D generation. However, the process
necessitates approximately three hours per case, which is
highly inefficient.

2.3 Feed-forward Generation
3D generative models have been intensively studied to
generate 3D assets without tedious manual creation. Gen-
erative adversarial networks (GANs) [6], [28], [53], [53],
[54], [54], [55], [56], [57], [58], [59] have long been the
prominent techniques in the field. Auto-regressive models
have been explored [60], [61], [62], [63], [64], which learn
the distribution of these 3D shapes conditioned on images
or texts. Diffusion models [5], [65], [66], [67], [68], [69], [70],
[71], [72], [73], [74], [75], [76] have also shown significant
recent success in learning probabilistic mappings from text
or images to 3D shape latent.

Recently, a series of large-scale 3D reconstruction models
based on transformers have emerged [15], [16], [18], [21],
[22], [77], [78]. Some of these models use single images [15],
[16], [18], [21], [77], while others utilize multiple images
generated by NVS models [22], [78]. These models employ
an end-to-end approach to generate implicit 3D representa-
tions using triplane NeRF. In addition, UNet has also been
proven effective in generating multiplane and Gaussian
representations [17], [79].

However, all these methods require 3D shapes or multi-
view data for training, raising challenges when generating
in-the-wild 3D assets due to the scarcity of diverse 3D
data [80], [81], [82] compared to 2D. At the same time, the
reconstruction results of these methods often face issues
such as the lack of fine geometric structures and the lack
of exquisite texture patterns.

3 PRELIMINARIES

DreamFusion [8] achieves text-to-3D generation by utilizing
a pretrained text-to-image diffusion model ϵϕ as an image
prior to optimizing the 3D representation parameterized by
θ.

The image x = g(θ), rendered at random viewpoints
by a volumetric renderer, is expected to represent a sample
drawn from the text-conditioned image distribution p(x|y)
modeled by a pretrained diffusion model. The diffusion
model ϕ is trained to predict the sampled noise ϵϕ(xt; y, t)
of the noisy image xt at the noise level t, conditioned on
the text prompt y. A score distillation sampling (SDS) loss
encourages the rendered images to match the distribution
modeled by the diffusion model. Specifically, the SDS loss
computes the gradient:

∇θLSDS(ϕ, g(θ)) = Et,ϵ

[
ω(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (1)

which is the per-pixel difference between the predicted and
the added noise upon the rendered image, where ω(t) is the
weighting function.

One way to improve the generation quality of a condi-
tional diffusion model is to use the classifier-free guidance
(CFG) technique to steer the sampling slightly away from
the unconditional sampling, i.e., ϵϕ(xt; y, t)+ωϵϕ(xt; y, t)−
ωϵϕ(xt, t,∅), where ∅ represents the “empty” text prompt.
Typically, the SDS loss requires a large CFG guidance weight
for high-quality text-to-3D generation, yet this will bring
side effects like over-saturation and over-smoothing [8].

Recently, Wang et al. [10] proposed a variational score
distillation (VSD) loss that is friendly to standard CFG
guidance strength and better resolves unnatural textures.
Instead of seeking a single data point, this approach regards
the solution corresponding to a text prompt as a random
variable. Specifically, VSD optimizes a distribution qµ(x0|y)
of the possible 3D representations µ(θ|y) corresponding to
the text y, to be closely aligned with the distribution defined
by the diffusion timestep t = 0, p(x0|y), in terms of KL
divergence:

LVSD = DKL(q
µ(x0|y)||p(x0|y)). (2)

[10] further shows that this objective can be optimized by
matching the score of noisy real images and that of noisy
rendered images at each time t, so the gradient of LVSD is

∇θLVSD(ϕ, g(θ)) = Et,ϵ

[
ω(t)(ϵϕ(xt; y, t)− ϵlora(xt; y, t, c))

∂x
∂θ

]
. (3)

Here, ϵlora estimates the score of the rendered images using
a LoRA (Low-rank adaptation) [83] model. The obtained
variational distribution yields samples with high-fidelity
textures. However, this loss is applied for texture enhance-
ment and is helpless to the coarse geometry initially learned
by SDS. Moreover, both the SDS and VSD attempt to distill
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from a fixed target 2D distribution which only assures
per-view plausibility rather than a global 3D consistency.
Consequently, they suffer from the same appearance and
semantic shift issue that hampers the perceived 3D quality.

4 DREAMCRAFT3D++: OVERVIEW

We propose a hierarchical pipeline for high-quality and
efficient 3D content generation as illustrated in Figure 2.
Given a single image, our method first leverages state-
of-the-art multi-view diffusion models to produce several
orthogonal and consistent multi-view images. Then, we
build a feed-forward sparse-view 3D reconstruction model
(Sec. 5) to efficiently infer the underlying textured meshes
from those input images. For this stage, we prioritize multi-
view consistency and global 3D structure, allowing for some
compromise on detailed textures and geometry. Finally, we
focus on jointly optimizing realistic and coherent texture as
well as detailed geometry, with a training-free object-aware
diffusion prior (Sec. 6).

5 MP-LRM: MULTI-PLANE LARGE RECONSTRUC-
TION MODEL

As illustrated in Figure 2, the Multi-Plane Large Reconstruc-
tion Model (MP-LRM) takes as input multi-view images
and their corresponding normal maps with known camera
poses. A convolutional U-Net is employed to map the
input images and normal maps to a set of non-orthogonal
multiple planes (Sec. 5.1 and 5.2). Subsequently, lightweight
multi-layer perceptrons (MLPs) are utilized to decode the
triplane features into signed distance field (SDF) values,
texture colors, and Flexicubes parameters (Sec. 5.3). Finally,
these decoded values are used to obtain a textured mesh
via the dual marching cubes algorithm. In the following
subsections, we elaborate on the key components of MP-
LRM (Sec. 5.4).

5.1 Nonorthogonal multi-plane representation with U-
Net based backbone
The core of our framework is a U-Net-based backbone U
that predicts a nonorthogonal multi-plane representation
from multi-view images. Figure 2 illustrates the network ar-
chitecture. The input consists of multi-view images N multi-
view images {Ii ∈ RH×W×3|i = 1, 2, ..., N} and their cor-
responding normal maps {Ni ∈ RH×W×3|i = 1, 2, ..., N}
with known poses. Here we adopt Zero123++ [32] to
generate 6 fix-viewed images and the number of planes
N = 6. Following previous works [77], [84], we em-
ploy Plücker ray embedding to densely encode the cam-
era poses. The RGB values and ray embeddings are con-
catenated into 12-channel feature maps, which are then
fed through U to predict a set of nonorthogonal planes
{Πi ∈ RH×W×C |i = 1, 2, ..., N}. The term “nonorthogo-
nal” refers to coordinate systems where the axes are not
perpendicular to each other, unlike the axis-aligned tri-
planes used in other methods. We opt for nonorthogonal
planes instead of orthogonal axis-aligned planes because we
believe that learning the mapping from 2D posed images
to orthogonal plane features is inefficient. If the network
capacity is insufficient, the mapping result is prone to

blurriness. Considering that multi-view diffusion models
always generate fixed-view images, we allow the network
to focus on learning pixel-aligned features without the need
to unpose them in space.

We employ a convolutional U-Net U to learn the map-
ping from 2D posed images to non-orthogonal plane fea-
tures. Compared to transformer-based methods [15], [16],
[19], [77], our U-shape design has a larger bandwidth for
preserving input information, resulting in highly detailed
triplane features and, ultimately, elaborate textured meshes.
Moreover, the convolutional network fully utilizes the geo-
metric prior of the spatial correspondence between triplanes
and the input six orthographic images, which greatly ac-
celerates convergence and stabilizes training. Our model
M can achieve reasonable reconstruction results at a very
early stage of training (around 20 minutes of training from
scratch).

5.2 Learnable plane embeddings

To address the lack of information in top and bottom views
due to the limited elevation range of generated multi-view
images, which often results in meshes with holes or artifacts,
we introduce two additional learnable plane embeddings.
These embeddings, denoted as Etop and Ebottom, are strate-
gically placed at the top and bottom, respectively. They are
processed through a U-Net-based backbone UE . Specifically,
these learnable plane embeddings and input images are
processed separately by the corresponding U-Net model’s
down-sampling and up-sampling paths, while the interme-
diate feature maps from both U-Nets are concatenated and
passed through the self-attention module. Our experiments
demonstrate that this approach effectively mitigates holes,
enhancing the quality of the reconstructed meshes.

5.3 Decoding planes to Flexicubes

Previous generic 3D generation methods predominantly
employ NeRF [85] or Gaussian splatting [24] as the ge-
ometry representation. These methods rely on additional
procedures, such as Marching Cubes (MC), to extract the iso-
surface, leading to topological ambiguities and challenges
in representing high-fidelity geometric details. In this work,
we utilize Flexicubes [23] as our geometry representation.
Flexicubes allow for mesh extraction from grid features
using dual marching cubes during training. The features
include signed distance function (SDF) values, deformation,
and weights. Texture is obtained by querying the color at the
surface. Flexicubes enable the training of our reconstruction
model to produce textured meshes as the final output in an
end-to-end manner. Given the surface vertices, we project
them onto each nonorthogonal plane and query the feature
using bilinear sampling. The features from all planes are
aggregated through channel-wise concatenation.

5.4 Loss Function

RGB loss. During training, we render the images at the K
supervision views, and minimize the image reconstruction
loss. Let {Igti |i = 1, 2, ...,K} be the set of groundtruth
views, and {Îi} be the rendered images, our loss function



SUBMIT TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XX 2024 6

M
ul

ti-
vi

ew
D

iff
us

io
n 

M
od

el
Multi-view RGB + Normal

U-Net

Ra
st

er
iz

at
io

n

FlexiCubes
Decoders

SDF

Color

ℒ!"#$%&

ℒ'()*+

ℒ,-.

Reference 

View Novel 

View

Te
xt

-t
o-

Im
ag

e
D

iff
us

io
n

M
od

el

IP-Adapter

Weight

Multiplane-Based Large Reconstruction Model Joint Refinement of Texture and Geometry

Fig. 2: DreamCraft3D++ pipeline. A single input image is processed by multi-view diffusion models to generate orthogonal,
consistent views and normal maps. A feed-forward sparse-view 3D reconstruction model (Sec. 5) infers textured meshes
from the multi-view images using a convolutional U-Net to map input to non-orthogonal planes, decoded into Flexicubes.
Finally, a training-free object-aware diffusion prior enhances high-frequency geometry and texture details via score
distillation (Sec. 6).

is a combination of MSE (Mean Squared Error) loss and
Perceptual loss:

Lrgb = λmse ·
1

K

K∑
i=1

∥∥∥Îi, Igti ∥∥∥2
2

+ λlpips ·
1

K

K∑
i=1

Llpips

(
Îi, I

gt
i

) (4)

where λlpips are the weight of the Perceptual loss. During
training, we set λlpips = 2.0.
Mask loss. During training, we also render the masks at
the K supervision views, and minimize the mask loss. Let
{Mgt

i |i = 1, 2, ...,K} be the set of groundtruth views, and
{M̂i} be the rendered masks, and we adopt Binary Cross
Entropy (BCE) loss as mask loss:

Lmask = λmask ·
1

K

K∑
i=1

LBCE

(
M̂i,M

gt
i

)
(5)

where λmask are the weight of the mask loss. During
training, we set λmask = 0.1.
Depth and normal loss. In addition, akin to Nerdi [47], we
fully exploit the geometry prior inferred from the reference
image, and enforce the consistency with the depth and
normal map computed for the reference view. The corre-
sponding depth and normal loss are respectively computed
as:

Ldepth = λdepth · 1

K

K∑
i=1

Mgt
i ⊗

∥∥∥D̂i, D
gt
i

∥∥∥
1

(6)

Lnormal = λnormal ·
1

K

K∑
i=1

Mgt
i ⊗

(
1− N̂i ·Ngt

i

)
(7)

The overall loss function is:

Ltotal = Lrgb + Lmask + Ldepth + Lnormal (8)

6 ACCELERATED JOINT REFINEMENT OF TEX-
TURE AND GEOMETRY

6.1 Training-free object-aware diffusion prior

The textured meshes generated by our MP-LRM, while
highly consistent with the multi-view input images, still

suffer from detail distortion due to two main factors: 1) lim-
ited network generalization caused by insufficient training
data; and 2) inconsistent and blurry multi-view renderings
produced by the multi-view diffusion models. To address
these issues, we introduce a refinement algorithm that si-
multaneously enhances both texture and geometry.

Previous methods refine 3D details by optimizing the
SDS loss, However, these pretrained 2D diffusion priors
lack object awareness, resulting in inconsistent optimiza-
tion during 3D reconstruction. DreamCraft3D tackles this
problem by fine-tuning a pretrained diffusion model using
multi-view image renderings through DreamBooth [86].
This approach allows the model to form a concept of the
scene’s surrounding views and promotes consistent texture
generation. Nevertheless, training DreamBooth is computa-
tionally inefficient due to its reliance on extensive iterative
processes. Its susceptibility to overfitting and the need for
careful parameter tuning further increase resource demands
and training time.

To overcome this limitation, we are the first to propose
the use of IP-Adapter [25], a training-free, lightweight im-
age prompt adaptation method that employs a decoupled
cross-attention strategy for existing text-to-image diffusion
models. Unlike DreamBooth, Ip-adapter does not require
training, making it significantly more efficient and suitable
for our refinement algorithm. By leveraging Ip-adapter, our
method can efficiently refine the textured meshes, enhanc-
ing both texture and geometry while maintaining consis-
tency with the multi-view input images. Notably, utilizing
IP-Adapter allows our method to refine textured meshes
four times faster than DreamCraft3D using DreamBooth,
reducing the optimization time from 40 minutes to just 10
minutes.

To mitigate ambiguity and texture multi-head problems
that arise when conditioning IP-Adapter on only the source
image, we condition the model on both the source image
Isource and the generated multi-view renderings Ii, i =
1, 2, ..., N . Similar to DreamCraft3D, we employ an off-
the-shelf upsampler [87] to augment multi-view renderings
before conditioning. We obtain image embeddings from the
IP-Adapter for all view images. During training, the IP-
Adapter image embedding is selected based on the location
of the randomly sampled camera, called view-dependent im-
age prompting. We use a weighted combination of the image
embeddings of different views depending on the value of
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the azimuth angle θcam. This approach ensures that the
most relevant image embedding is utilized based on the
camera’s position, enhancing the consistency and quality of
the generated 3D reconstructions.

6.2 Joint texture-geometry refinement

Camera and light augmentations. We follow Magic3D [9]
to add random augmentations to the camera and light
sampling for rendering the shaded images. Differently, we
sample the point light location such that the angular dis-
tance from the random camera center location (w.r.t. the
origin) is sampled with a random point light distance rcam
in [7.5, 10], and we freeze the material augmentation un-
like Dreamfusion and Magic3D, as we found it is bad for
training convergence. During training, we fix the Field-of-
View angle to 40◦, and sample elevation angle ϕcam from
U(−10, 45) and azimuth angle θcam from U(−180, 180), and
distance from the origin in [1, 1.2].
Iterative RGB and Normal rendering. DreamCraft3D al-
ternately renders normal maps N̂ and RGB images Î as
the input for diffusion guidance Îg to enhance texture and
geometry disentanglement. For convenience, we ignore the
view subscript. While this strategy leads to finer geometry,
it can result in geometry-texture misalignment due to the
absence of RGB cues in normal maps, causing divergent op-
timization directions for geometry and texture. To address
this issue, we propose a new strategy that blends normal
maps and RGB images using a random weight α ∈ [0, 1],
instead of solely relying on normal maps for guidance input:

Îg =

{
Î if r < 0.5

α · Î + (1− α) · N̂ if r ≥ 0.5
(9)

where r ∼ Uniform(0, 1) and α ∼ Uniform(0, 0.5) is a
random variable used to weight the RGB and normal com-
ponents of the output when r ≥ 0.5. This blending approach
incorporates both geometric information from the normal
maps and color cues from the RGB images, promoting a
more coherent optimization of geometry and texture.

6.3 Loss functions

We supervise the refinement by two parts: pixel-level loss
under the reference view and the diffusion distillation loss
at random views. For the diffusion distillation loss, since
we adopt a training-free customized diffusion prior, the
standard VSD loss in [10] is used instead of BSD in Dream-
Craft3D:

∇θLVSD(θ) = Et,ϵ,c[ω(t)(ϵipa(Ît; y
c, t)− ϵlora(Ît; t, c, y))

∂Î

∂θ
],

(10)
where Ît = αtÎ + σtϵ. ϵipa(Ît; y

c, t) is a pretrained diffu-
sion model adapted to multi-view image prompts using
IP-Adapter. ϵlora is parameterized by a LoRA (Low-rank
adaptation [83]) of ϵipa(Ît; y

c, t), conditioned on additional
camera parameter c.

The pixel-level reconstruction loss at reference view
Lrecon is the combination of RGB MSE loss and LPIPS loss,
as well as consistency loss [88]:

Ltotal = λrgbLmse+λlpipsLlpips+λconsistencyLconsistency (11)

The total loss is:

Ltotal = Lrecon + λvsdLvsd, (12)

where λrgb = λlpips = 10000, λconsistency = 100, λvsd =
0.1.

7 EXPERIMENTS

7.1 Implementation Details
Dataset. We train our model on selected partitation of Obja-
verse dataset [89], which contains 240k 3D models. We use
Blender to render ground-truth 512 × 512 images, depths
and normals for an object. We normalize the shape to the
box [-0.5, 0.5] in world space and render 100 random views
and 6 fixed views aligned with Zero123++ V2 setting, lit
with randomly selected environment maps.

For Evaluation, we adopt Google Scanned Objects
(GSO) dataset [90], which includes a wide variety of high-
quality scanned household items, to evaluate the perfor-
mance of our method and other baselines. Following In-
stantMesh [19], we randomly choose 300 shapes and render
21 images of each object in an orbiting trajectory with
uniform azimuths and varying elevations in 30◦, 0◦, 30◦.
Besides, we establish a test benchmark that includes 300
images, which is a mix of real pictures and those produced
by Stable Diffusion [91] and Deep Floyd. Each image in this
benchmark comes with an alpha mask for the foreground, a
predicted depth map, and a text prompt. For real images, the
text prompts are sourced from an image caption model. We
intend to make this test benchmark accessible to the public.
Architectural details. Our model MP-LRM contains 600M
parameters, with two U-Nets for the multi-view images
and learnable plane embeddings. The U-Nets have [64, 128,
128, 256, 256, 512, 512] channels and attention blocks at
resolutions [64, 32, 16]. We generate 6-view 256×256×36
images and normal maps using Zero123++ [32]. The two
learnable 256×256×32 plane embeddings are placed at the
bottom and top. The plane decoder is of 5 layers with
hidden dimensions 64. The Flexicubes grid size is 96 and the
rendering resolution is 512 for both training and inference.

We employ DreamShaper [92] as the pretrained text-
to-image diffusion model for guidance. For image prompt
adaptation, we initially utilize SUPIR [87] to enhance
the resolution of the multi-view images generated by
Zero123++ and then apply IP-Adapter [25] to adapt the
diffusion model to those upscaled images and the original
input image. The IP-Adapter scale is configured to 0.8.
Training details. We train MP-LRM using 64 NVIDIA A100
(80G) GPUs with a batch size of 256 for 100 epochs, which
takes approximately 5 days to complete. For each training
sample, we use 6 fixed views aligned with Zero123++ as
input images. To supervise the shape reconstruction, we uti-
lize a total of 4 views: 3 randomly selected from a set of 100
views and 1 randomly chosen from the input views. During
training, we use random background color augmentation.
We optimize the model using the AdamW optimizer with a
learning rate of 4×10−4 and a cosine learning rate schedule.

For the refinement, we build our system based on the
foundation of threestudio [93]. We improve the Flexicubes
grid size from 96 to 192 for detail sculpting. We optimize
each case for 2000 iterations on one NVIDIA A100 (80G)
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TABLE 1: Quantitative results on Google Scanned Objects
(GSO) orbiting views.

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ FS ↑
TripoSR 14.152 0.829 0.213 0.168 0.730
LGM 13.814 0.821 0.218 0.191 0.642
CRM 16.401 0.838 0.201 0.166 0.754
InstantMesh 16.697 0.850 0.157 0.140 0.804
DreamCraft3D 16.302 0.835 0.230 0.177 0.656
Ours (Coarse) 17.729 0.843 0.151 0.131 0.821
Ours 20.251 0.862 0.132 0.136 0.795

GPU with batch size of 1. We optimize the model using the
AdamW optimizer with separate learning rates for different
modules: ηϵlora = 1e−4, ηGe

= 1e−2, ηF = 1e−3. ϵlora, Ge, F
represent the LoRA layer of the guidance, geometry encod-
ing network, and Flexicubes parameters. During training,
the diffusion timestep t is sampled from range [0.02, 0.4].

7.2 Comparisons with the State of the Arts

Baselines. We compare our technique against six base-
lines: four feed-forward methods (TripoSR [94], LGM [17],
CRM [79], InstantMesh [19]) and one optimization-
based method (DreamCraft3D [12]). TripoSR is the best-
performing open-source LRM for single-view reconstruc-
tion. LGM and CRM are UNet-based models that recon-
struct Gaussians and 3D meshes from multi-view images,
respectively. InstantMesh is a Transformer-based LRM us-
ing Flexicubes. DreamCraft3D optimizes 3D reconstruction
from a single image.
Quantitative comparison. We report the quantitative results
on GSO [90] dataset in Table 1. For each metric, we highlight
the top three results among all methods, and a deeper color
indicates a better result. We use four evaluation metrics:
PSNR, SSIM, LPIPS, Chamfer Distance (CD) and F-Score
(with a threshold of 0.05). The first four metrics are for
novel view synthesis and the last two are for geometry
reconstruction quality.

From the 2D novel view synthesis metrics, we can ob-
serve that DreamCraft3D++, including our coarse model,
outperforms the baselines on PSNR, SSIM and LPIPS signif-
icantly, indicating that its generation results have the best
perceptually viewing quality.

As for the 3D geometric metrics, DreamCraft3D++ out-
performs the baselines on both CD and FS, indicates more
reliable generated shapes. Note that the result after re-
finement has slightly worse geometry metric performance
because the objects optimize more surface detail guided by
the pretrained diffusion model, which may affect chamfer
distance.
Qualitative comparison. To validate the effectiveness of
our method, we qualitatively compare our results with the
baselines: TripoSR, LGM, CRM, InstantMesh, and Dream-
Craft3D. For all baselines, we use their official code and
checkpoints. We first visualize images from the GSO dataset,
as shown in Figure 3. The figure demonstrates that our
MP-LRM generates higher quality results compared to all
other baselines. This can be attributed to the efficiency of
our method, which fully utilizes the spatial alignment of

TABLE 2: Ablation study on the learnable plane embeddings

Method PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ FS ↑
w/o E 17.119 0.838 0.174 0.152 0.754
Ours 17.729 0.843 0.151 0.131 0.821

input posed images and outputs a multiplane-based repre-
sentation. Furthermore, the refinement stage restores texture
details, further improving fidelity.

We also visualize the meshes generated from a single
input image using these baselines on a set of more complex
internet images, as shown in Figure 4. Our improvement in
3D generation quality is even more evident in these complex
cases. Compared to the one-stage methods, our MP-LRM
produces smoother and more reasonable geometry with
better detail. For instance, in the case of the fox and cat
(second and eighth rows), LGM, CRM, and InstantMesh
generate incomplete meshes, while our coarse results are
complete and smooth. More importantly, the significance
of our proposed refinement stage is clear. By leveraging
a powerful 2D pre-trained diffusion model, it enhances
texture and geometric details while maintaining a unified
style consistent with the input image through multi-view
conditioned object-awareness.

DreamCraft3D generates sharper texture details com-
pared to the one-stage methods; however, it still falls short
of our approach. We posit that this is due to the sensitivity
of DreamBooth training to hyperparameters and training
steps, which can lead to over-saturated textures. Further-
more, the iterative nature of DreamBooth and 3D refinement
in DreamCraft3D may exacerbate this issue, causing the
accumulation of artifacts over multiple iterations.

7.3 Ablation study

The learnable plane embeddings. In our paper, in order to
address the lack of information in the top and bottom views,
we introduce two additional learnable plane embeddings
placed at the top and bottom of the volume, respectively. Ta-
ble 2 demonstrates that this design effectively mitigates this
issue by incorporating the additional embeddings, thereby
reducing holes and enhancing the overall quality of the
reconstructed meshes.
The strategies of the refinement. Figure 5 presents an
ablation study comparing five texture optimization tech-
niques: (1) Score Distillation Sampling (SDS), (2) Variational
Score Distillation (VSD), (3) VSD with a single-view image-
conditioned IP-Adapter, (4) VSD with a multi-view image-
conditioned IP-Adapter, and (5) VSD with a multi-view
image-conditioned IP-Adapter and iterative normal-image
rendering. SDS generates novel-view textures that appear
overly smooth and saturated. While VSD using standard
stable diffusion produces more realistic textures, it suffers
from notable inconsistencies, such as the astronaut’s face
appearing at the back view. Incorporating a single-view
image-conditioned IP-Adapter introduces object awareness
but still results in multi-face texture issues. Our proposed
multi-view image-conditioned approach achieves a balance
between realism and consistency, although the resulting ge-
ometry appears noisy. To address this, we employ iterative
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Fig. 3: Qualitative comparison with baselines on the GSO dataset.

RGB and normal rendering, which enhances the disentan-
gled optimization of texture and geometry and refines the
surface geometry.

7.4 Applications

3D rigged animation. As shown in Figure 6, we export the
high-quality textured meshes for downstream applications,
including rigged animation. By utilizing software such as
Mixamo [95], we can efficiently employ these meshes for
rigging and animation tasks, thereby streamlining the work-
flow and improving the overall production process.

8 DISCUSSIONS AND CONCLUSIONS

Limitations. Though DreamCraft3D++ demonstrates im-
pressive capabilities in high-quality 3D generation, it is not

without limitations. A significant drawback lies in the qual-
ity of multi-view images produced by Zero123++, which are
directly utilized for 3D reconstruction via MP-LRM and IP-
Adapter prompt conditioning. Zero123++ struggles to gen-
erate satisfactory multi-view images when presented with
complex inputs or significant elevation angles. Additionally,
DreamCraft3D++ outputs 3D objects with baked illumina-
tion, rendering them unsuitable for graphics pipelines that
require controlled lighting conditions.

Future work. For future work, one promising direction
involves the exploration of enhanced multi-view diffusion
models that can deliver higher quality outputs and accom-
modate a broader range of elevation angles in input im-
ages. Furthermore, integrating physically-based rendering
(PBR) materials into the 3D generation process could yield
significant improvements. Finally, expanding the scope of
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Input TripoSR LGM CRM DreamCraft3DInstantMesh Ours (Coarse) Ours

Fig. 4: Qualitative comparison with baselines on the Internet images.

3D generation from individual objects to entire scenes is
essential, particularly by supporting flexible input formats
such as captured video sequences or multiple unposed
images.
Conclusions. In this work, we present DreamCraft3D++, a

framework for efficient high-quality generation of complex
3D assets. Building on the multi-stage process of Dream-
Craft3D, we replace the time-consuming geometry sculpt-
ing optimization with a feed-forward, multi-plane recon-
struction model, achieving a 1000x speedup. For texture
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SDS VDS VDS+IPA VDS+MV IPA VDS+MV IPA+Normal

Fig. 5: Ablation study on the strategies of the refinement.

Input Images Reconstructed Meshes Animated Meshes

Fig. 6: We export the high-quality textured meshes, enabling
seamless integration into downstream applications such as
3D rigged animation.

refinement, our training-free IP-Adapter module utilizes
enhanced multi-view images to improve texture and ge-
ometry consistency, providing a solution that is four times
faster than DreamCraft3D’s DreamBooth fine-tuning. Our
approach generates intricate 3D assets with realistic 360°
textures, significantly outperforming current state-of-the-art
image-to-3D methods in quality and speed.
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